Improving science participation: Five evidence-based recommendations for policy-makers and funders

Science Capital Team. 

To continue with science post-16, young people must achieve certain levels of understanding and attainment. Crucially, they must also feel that science is a good ‘fit’ for them – that science is ‘for me’.

Drawing on more than five years of research conducted by the Enterprising Science project in classrooms and out-of-school settings, the team have developed five key recommendations for policy-makers and funders who want to broaden and increase young people’s engagement with science. These recommendations are set out in Improving Science Participation, a new publication launched earlier this month at the government’s Department for Business, Energy and Industrial Strategy (BEIS).

The recommendations focus on the concept of science capital. Research has shown that science capital can help explain variable rates of science engagement and participation across formal and informal settings. It can also help to frame interventions designed to support engagement.

The concept of science capital originally emerged from the ASPIRES project, a longitudinal study tracking young people’s science and career aspirations. Analyses from ASPIRES show that the more science capital young people have, the more likely they are to aspire to study science in the future.

Young people with lower levels of science capital tend not to see themselves as ‘sciencey’ and are therefore less likely to want to continue with science. Students who do not see science as meaningful and relevant to them find it more difficult to engage with the subject.

With this in mind, Enterprising Science has published the following recommendations for improving science engagement and participation:

  1. Ensure that, within your context, young people’s encounters with science (in and beyond the classroom) are based on the science capital educational approach.

This approach links science with what matters to students, with their daily lives and what matters to them. It:

  • values activities outside school and connects science with the students’ own community;
  • tweaks lesson plans to help students see how science relates to their everyday lives and how it is useful in any job they may aspire to.

Qualitative and quantitative data show that over the course of a year, teachers who used the science capital approach recorded marked improvements in their students’ attitudes to science, their aspirations for studying science at A-level, and a host of other benefits. While developed in secondary science classrooms, the principles underpinning the approach are applicable across a wide range of contexts, including primary schools as well as informal settings, such as science centres, museums and other organisations concerned with science engagement and communication.

  1. Focus on changing institutional settings and systems – rather than young people.

To date, many attempts to increase engagement with science, whether in the classroom or the informal sector, have focused on the young person, trying to identify ways they need to be fixed or changed. Instead, the science capital approach focuses on changing settings, or what is termed, the ‘field’. Field is a sociological concept that relates not only to a physical setting, but also encapsulates the range of social relations, expectations and opportunities in a given environment.

  1. Take the long view: move from one-off to more sustained approaches.

Engaging more – and more diverse – young people with science is not an easy goal and requires more than a simple quick fix. Whether in schools, or informal settings, changing the field takes time and requires reflection.

  1. Use science capital survey tools appropriately.

Over five years, the Enterprising Science project has developed a survey tool instrument to measure young people’s science capital. The survey can be used to measure baselines or capture changes resulting from sustained, longer term interventions. Contact our team for copies of the student and/or adult science capital surveys and for advice on how to interpret the data: ioe.sciencecapital@ucl.ac.uk.

  1. Improve connectivity: create pathways, progression and partnerships.

Evidence shows that young people with high science capital report engaging with science across a range of settings. This means science capital is generated across a range of experiences. Greater connectivity within and between settings should help to build science capital and support science engagement. Research also shows that when individuals can connect their experiences across settings, engagement can flourish. See the report for our recommended action points on how to improve connectivity.

To find out more about these recommendations and to understand the research behind them, download the Improving Science Participation report.

For hard copies of the report please contact ioe.sciencecapital@ucl.ac.uk.

Photo: O. Usher (UCL) via Creative Commons

Tagged with: , , ,
Posted in Employment and skills, Evidence-based policy, Further higher and lifelong education, Teaching, learning, curriculum & assessment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

UCL Institute of Education

This blog is written by academics at the UCL Institute of Education.

Our blog is for anyone interested in current issues in education and related social sciences.
@IOE_London
Keep up with the latest IOE research

Enter your email address and we'll let you know when a new post is published

Join 33,089 other followers